Bertrand Russell: il paradosso delle classi



In un primo tempo, Russell fu influenzato dall'idealismo di Bradley e di Mc Taggart, che poi abbandonò, anche per via dell'influsso di Moore, aderendo ad una 'posizione realistica' , che riconosce l'esistenza della pluralità di oggetti, con i quali hanno a che fare l'esperienza comune e il sapere matematico.


Ad avviso di Russell, alla base del monismo di Bradley c'é una logica erronea, che privilegia la forma soggetto-predicato: per Bradley infatti ogni proposizione attribuisce un predicato alla realtà assoluta, intesa come l'unico soggetto. Ma il nostro linguaggio ha non solo proposizioni del tipo soggetto-predicato, ma anche proposizioni che fanno riferimento a relazioni di maggiore e minore, di prima e dopo e così via. Un termine, che può assumere o no qualcuna di queste relazioni, deve rimanere invariato, ma allora ne consegue che, contrariamente a quanto aveva pensato Bradley, nessuna relazione modifica i termini tra i quali intercorre. Se ad esempio si esamina la proposizione 'A é maggiore di B' , si vede che questa relazione non é l'attribuzione di una qualità o proprietà ad un soggetto e, quindi, non é riducibile alla forma soggetto-predicato, in quanto dipende sia da A sia da B. Questo vuol dire che questa relazione é esterna sia ad A sia a B, cioè collega tra loro entità che sussistono indipendentemente da tale relazione: l'universo é dunque popolato di termini, cioè di entità, che in questa fase del suo pensiero Russell considera analoghe alle idee platoniche, le quali sono caratterizzate da relazioni esterne tra loro, ossia tali da non produrre una loro modificazione interna: e Russell afferma che ' il mondo improvvisamente diventò vario, ricco e solido '. Solo una logica delle relazioni può rendere conto della stessa operazione del contare, consistente nel porre in relazione termine a termine, e consentire in questo modo l'analisi di intere regioni della matematica, nelle quali sono essenziali le nozioni di ordine e di successione, per esempio tra numeri o tra punti, le quali non sono descrivibili nei termini della logica di soggetto-predicato. Al calcolo delle proposizioni e al calcolo delle classi, già ampiamente illustrato dalla logica simbolica, Russell affianca dunque una logica delle relazioni, caratterizzate dall'uso di simboli appropriati e i cui antecedenti possono essere ravvisati soprattutto nell'opera di Peirce.
Russell riscontra vari tipi di relazioni: in primis distingue tra relazioni simmetriche e asimmetriche ; prendiamo R come simbolo per indicare la relazione e a e b per indicare i termini tra i quali essa intercorre: una relazione si dice simmetrica quando, se vale aRb , allora vale pure bRa e viceversa; di questo tipo é per esempio la relazione 'fratello di'; infatti, se Giorgio é fratello di Marco, Marco é fratello di Giorgio. Una relazione si dice invece asimmetrica quando questo non vale: per esempio, se Giorgio é padre di Marco, allora Marco non é padre di Giorgio. Inoltre alcune relazioni godono della proprietà transitiva , per cui se aRb e bRc , allora aRc , mentre altre non ne godono. Ad esempio, godono della relazione transitiva le relazioni di maggiore e di minore: infatti se A é maggiore di B e B é maggiore di C, allora A é maggiore di C. Non si può invece concludere ad esempio che se A é padre di B e B é padre di C, allora A é padre di C ; qui non vale la proprietà transitiva. Nella sfera della logica proposizionale Russell introduce la distinzione tra proposizione e funzione proposizionale : quest'ultima é un'espressione avente ad esempio la forma 'x é un uomo' , dove x é una variabile sostituibile da un termine definito, detto costante , ad esempio dal termine 'Socrate', dando luogo alla proposizione 'Socrate é un uomo'. Russell non restringe il rango delle entità delle entità che possono essere sostituite alla variabile in una funzione proposizionale; l'unica condizione é che la condizione sia ' qualcosa di assolutamente definito, riguardo al quale non vi é alcuna ambiguità ' .
Una funzione proposizionale di per sè non é nè vera nè falsa; vera o falsa é la proposizione che si ottiene sostituendo la variabile con una costante. Risulta inoltre che una una funzione proposizionale può essere considerata come una classe di proposizioni: nell'esempio considerato, 'x é un uomo' é la classe di tutte le proposizioni che hanno come predicato 'é un uomo'. Tra le proposizioni esiste una relazione di implicazione che Russell definisce materiale : essa si esprime nella forma 'se P, allora Q' ; in questo caso si può anche dire che Q é deducibile da P , se non si dà il caso che P é vera e Q é falsa. L'implicazione tra funzioni proposizionali é invece detta formale , dal momento che non riguarda singole proposizioni con i loro specifici contenuti materiali: così, ad esempio, 'x é un uomo' implica formalmente che 'x é mortale' , il che significa che 'se x é un uomo, allora x é mortale' . La conoscenza dell'opera del professore dell'università di Torino, Giuseppe Peano, autore di un Formulario di matematica , fu importantissima per Russell soprattutto per quel che riguarda la concezione dei rapporti tra matematica e logica . Peano aveva dimostrato che é possibile costruire l'intera teoria dei numeri naturali partendo da tre concetti fondamentali (zero, numero e successore immediato) e da 5 assiomi; per Russell questi tre concetti di Peano sono riducibili alle nozioni logiche di classe e di relazione. Questo vuol dire che la conoscenza matematica può essere pienamente giustificata mostrandone la derivabilità da queste nozioni meramente logiche.
Egli avrebbe assolto a questo compito per mezzo della costruzione, tramite i simboli della logica, di un edificio puramente formale nei Principia mathematica , composti insieme a Whitehead: qui i teoremi della matematica pura sono dedotti a partire dalla definizione di zero, numero e successore, usando regole di derivazione delle proposizioni. Questa derivazione é attuata grazie all'ausilio di 4 operatori o costanti logiche: 'non' (negazione), 'e' (congiunzione), 'o' (disgiunzione) e 'se..., allora...' (implicazione). Russell é convinto che la matematica pura é la classe di tutte le proposizioni che hanno la forma dell'implicazione e che é compito della logica analizzare questa relazione. Ma per dimostrare che la matematica si fonda sulla logica, si deve anche dimostrare che i numeri naturali e, quindi, tutte le nozioni fondamentali dell'aritmetica, sono definibili in termini di classe . I numeri non coincidono con le classi di oggetti che sono contati, ma sono quel che tutte queste collezioni di oggetti hanno in comune. Russell definisce pertanto il numero cardinale come ' la classe di tutte le classi simili ad essa ' , cioè di tutte le classi i cui membri possono essere correlati uno ad uno.
Ad esempio, una classe ha tre membri, se appartiene alla classe alla quale appartengono tutte le classi simili ad essa, dove 'simile' vuol appunto dire che i membri di tali classi possono essere correlati uno ad uno. In tal modo ogni discorso aritmetico su numeri é formulabile nei termini di un discorso meramente logico riguardante le classi e le loro relazioni. Ben presto tuttavia Russell prese atto che il concetto di classe, o di insieme, può dar luogo ad antinomie o paradossi . In particolare, il pensatore inglese individuò, già al termine della stesura dei Principi di matematica , una contraddizione relativa alla nozione di 'classe di classi' , la quale é essenziale per definire i numeri naturali. Egli distinse tra classi che non sono membri di se stesse, cioè non contengono se stesso come elemento: ad esempio, la classe degli uomini non é un uomo e, quindi, non é un membro di se stessa, mentre la classe di tutti i concetti é a sua volta un concetto e, quindi, contiene se stessa come elemento. A questo punto si pone l'interrogativo: la classe di tutte le classi, che non sono membri di se stesse, é membro di se stessa? Se si dice 'sì' , essa é una classe che é membro di se stessa, ma allora contiene se stessa come elemento e, quindi, non é più la classe di tutte le classi che non contengono se stesse come elemento. Se si dice 'no', essa é una classe che non é membro di se stessa, ma allora appartiene alla classe delle classi che non contengono se stesse come membro e, quindi, contiene se stessa come elemento. Quale che sia la risposta data, ne consegue sempre e comunque l'opposto rispetto ad essa: questo vuol dire che la nozione di classe di tutte le classi che non contengono se stesse come elemento genera contraddizioni. Questa antinomia faceva vacillare il programma logistico: quale é l'utilità nel definire i numeri in termini di classi, se la nozione di classe genera contraddizioni? Per risolvere questo problema, Russell elaborò la cosiddetta teoria dei tipi , in un primo tempo in una versione più semplice e poi i una più complessa, detta 'ramificata' . A suo parere, i paradossi nascono da un circolo vizioso, consistente nel ' supporre che una collezione di oggetti possa contenere membri definibili solo tramite la collezione presa come un tutto ' .
Per evitare questo circolo vizioso, che consiste nell' autoriferimento di una totalità o di una classe a se stessa, bisogna evitare che tale totalità sia predicata di se stessa e far sì che qualunque asserzione su di essa cada fuori dalla totalità stessa. Per Russell a questo si può provvedere distinguendo tra vari livelli o tipi di oggetti e predicati: di tipo 1 sono gli individui (ad es. Socrate), di tipo 2 sono le proprietà o le classi di individui (ad es, l'umanità), di tipo 3 sono le proprietà o le classi di proprietà e così via. Il paradosso delle classi sorge dal presumere che tutte le classi siano di un tipo solo, mentre é fondamentale che le proprietà di un livello o tipo superiore siano applicate, vale a dire predicate, solamente ad oggetti di tipo inferiore. Questo vuol dire che, data ad esempio la funzione proposizionale 'se x é un uomo, x é mortale' , la teoria dei tipi dà regole per i valori che x può ammettere.
Ad esempio, da tale funzione é legittimo inferire la proposizione 'se Socrate é un uomo, Socrate é mortale' , ma non 'se la legge di contraddizione é un uomo, allora la legge di contraddizione é mortale' : quest'ultimo é solamente un gruppo di parole scevro di senso. Questo implica che 'Socrate' e 'la legge di contraddizione' appartengano a tipi diversi tra loro.